DISTRIBUTING FLOWS
BETWEEN SDN CONTROLLERS

Jacek Litka, MSc Eng.

AGENDA
Principles of Software Defined Networking (SDN)

SDN Performance

Distributing Flows, a Solution for SDN Performance
Current State. Are Vendors Ready?

Current Trend in Research. "Switching the Switches"

My Research. Switching Flow Handling

L S o A e

Conclusions and Further Works

1. PRINCIPLES OF SOFTWARE DEFINED NETWORKING (SDN)

::::Ilt:;tlon PI::::):TOn App“ci -
R [‘,E §|
i 4 PACKET-OUT
m L\m 2. PACKET-IN with refarning
with encapsulated packet
Con ,fl 1(\;TRL1) Con ;ill 2(\CTRL2)
Contrltirpiane | | packe 3. FLOW MOD
T 7 with flow handling
Y rules
‘2
1 First packet of 5. Returned packet
the flow of the flow
Switch s:rac; 5 e(sw5) Switch 4 (SW4)

2. SDN PERFORMANCE

SDN performance is not a well-defined problem — Even though recommendation documents
exist, no specific guidelines have been provided.

Issues occur in both controller and switch layers — A number of them, many not correlated,
disturb the efficiency of SDN architecture.

Interconnection between these two layers provides additional hurdles — Connecting controllers
to switches in a production-type environment provides its own considerations.

2. SDN PERFORMANCE

Possible performance considerations in switch Possible performance considerations between

layer: switch and controller layers:
o switching time, ° limitations on switch-to-controller requests rate,
> flow table lookup time, o physical distance between controllers and
> flow table capacity limits, switches,
> flow rule installation time. > placement of controllers in overall SDN network
structure,
Possible performance considerations in > possibility of switch not having completed the
controller layer: process of flow rule installation when a 2nd
> time of handling, packet of that flows is received by it.

° intensity of requests,
o buffer limits for incoming PACKET-IN messages,
> topology reconstruction time.

3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE

Increase of controller’s workload leads to increase of PACKET-IN handle time.

Simple solution? Decrease the workload!

However, we do not have the ability to change the volume of traffic in the network.

> w N

Complex solution? Distribute the workload!

3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE

Use case #1:

Distribute the workload equally

Benefit: «EDI)

o Decreases workload of a single controller.

Cu:rntr$ller1
Drawback: |
o With a small overall workload, there is a waste :
of resources. 505 PACKET-IN

o

Cu:rntréller 2

3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE

Use case #2:

Offload some of the workload

Benefit: GEDI} iﬁ:}j

o Decreases workload of the ,main” controller.
Eu:rntrtller 1 Eu:rntr'tller 2

Drawback: : :

> How big of an ,,offload” should there be? | |
90 PA-!:HET—I M 156 F‘AFHET—IN

| == |
—) 1:'_? —_—— -
P .

3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE

Use case #3:

Dynamically change the offload value

Benefits: GE-_‘)I) iﬁ}j

o Decreases workload of the ,main” controller.

o Mitigating unnecessary waste of resources. C':’”t"?“”l CDH’EI‘?“EFE
| I
Drawback: | |
> Requires an algorithm for calculating the offload [im'“’*im‘:m"” "*P’“Cim"”
value. /BT \g— — -
< -

4. CURRENT STATE. ARE VENDORS READY?

Yes. IN THEORY.

° OpenFlow switch may work with more than one controller by assigning appropriate roles:
° MASTER,
° EQUAL,
° SLAVE.

o |ITU-T recommendation defines an EAST-WEST INTERFACE for communication between controllers.

o OpenFlow since version 1.3 defines ,,auxiliary connections” for distributing protocol messages (including
PACKET-IN) between controllers.

4. CURRENT STATE. ARE VENDORS READY?

No. IN PRACTICE.
o Controller states do not work well in distributing workload scenarios.

o MASTER — There can be only one, each of the other controllers has to work in SLAVE role. MASTER takes on all PACKET-IN
messages.

o SLAVE — Does not know the topology of the network. Is unable to design flow rules.

o EQUAL — Every EQUAL controller receives every asynchronous message from a switch; therefore, a PACKET-IN message is generated
to all controllers.

o East-West Interface is not standardized; software implementations sometimes DO NOT WORK.

o Open vSwitch, the reference open source OpenFlow switch, DOES NOT implement auxiliary
connections.

4. CURRENT STATE. ARE VENDORS READY?

ORIGINAL CODE FOR CONTROLLERS' COOPERATION IN FLOODLIGHT SDN CONTROLLER.

29 private static final int READ BUF SIZE = 1024;

30 private Integer sendTO;

31 private Integer linger;

32 private SocketChannel sc;

33

34= /¥

35 * Constructor should take all standard params reguired, like connection

36 * timeout, 50 LINGER etc.

37 “/

38

398 public NioClient(Integer sndTimeOut, Integer linger) {

40 sendT0 = sndTimeOut;

41 this.linger = linger;

42

43 }

44

45= public SocketChannel connectClient(String host) {

46 Integer port = Integer.valueOf(host.substring(1@));
47 string host2 = host.substring(®, 9);

48

49 InetSocketAddress inet = new InetSocketAddress(host2z, port);

58 try {

51 sc = SocketChannel.openiinet);

52 sc.socket().setSoTimeout(sendT0);

53 sc.socket().setTcpNoDelay(false);

54 sc.socket().setSoLinger(false, linger);

55 sc.socket().setReuseAddress(true);

56 sc.socket().setPerformancePreferences(1, 2, 0);

57 return sc;

58 } catch (Exception e) {

59 return null;

60 }

61 }

4. CURRENT STATE. ARE VENDORS READY?

MAKING IT ACTUALLY WORK.

private static final int READ BUF SIZE = 1024;
private Integer sendTO;

private Integer linger;

private SocketChannel sc;

fxx
* Constructor should take all standard params required, like connection
* timeout, SO LINGER etc.

=/

public NioClient({Integer sndTimeOut, Integer linger) {
sendT0 = sndTimeOut;
this.linger = linger;

}

public SocketChannel connectClient(String host) {

Integer delimiter = host.indexOf(":");

Integer port = Integer.valueOf(host.substring(delimiter + 1));
String host2 = host.substring(®, delimiter]ﬂ

InetSocketAddress inet = new InetSocketAddress(host2, port);

try {
sc = SocketChannel.open{inet);
sc.socket().setSoTimeout (sendTO);
sc.socket().setTcpNoDelay(false);
sc.socket().setSoLinger(false, linger);
sc.socket().setReuseAddress(true);
sc.socket().setPerformancePreferences(1, 2, 0);
return sc;

} catch (Exception e) {
return null;

}

4. CURRENT STATE. ARE VENDORS READY?

OPEN VSWITCH STATEMENT ON AUXILIARY CONNECTIONS.

OpenFlow 1.3

OpenFlow 1.3 support requires OpenFlow 1.2 as a prerequisite, plus the following additional work. (This is based on the
change log at the end of the OF1.3 spec, reusing most of the section titles directly. | didn't compare the specs carefully yet.)

= IPv6 extension header handling support.

Fully implementing this requires kernel support. This likely will take some careful and probably time-consuming
design work. The actual coding, once that is all done, is probably 2 or 3 days work.

(optional for OF1.3+)

« Auxiliary connections.

An implementation in generic code might be a week's worth of work. The value of an implementation in generic code
is questionable, though, since much of the benefit of axuiliary connections is supposed to be to take advantage of
hardware support. (We could make the kernel module somehow send packets across the auxiliary connections
directly, for some kKind of “hardware” support, if we judged it useful enough.)

5. CURRENT TREND IN RESEARCH. "SWITCHING THE SWITCHES"

State 1: One controller handles multiple networks

State 2: Networks are distributed among multiple
controllers

!

I
I
I
I
I
I
I
I
|

Controller 2\ / Controller 3 Ccrntrl:rller 2\

| |
| |
| |
| I |
| Contrplier 1 |
| |
| |
| 1

Lo

I
Contrplier 1

I
I
I
I
I
I
I
I
1 |

|
CampusNetwofk 1
| |

s e I

&gp%

==
| | | |
Campus Netwaork 3

=

Campus Netwo-tk 1
| | |

s e I

&gp%

==
| | | |
Campus Netwaork 3

6. MY RESEARCH. SWITCHING FLOW HANDLING

Traffic
Generator
Host

Emulation environment from 2024

Link
Workload
Generator

Host1l

Link
Workload
Generator
Host 2

Link
Workload
Receiver

Host 1

Controller

<

Link
Workload
Generator

Host 3

Link
Workload
Receiver

Host2

Emulation environment from 2025

Link
Workload
Generator

Heost 1

Controller
Workload
Generator
Host
Controller 3\{0::111':;
—— Workload > .
Switch Receiver
Host
Traffic
——— Receiver
Host
Link
Workload
Receiver
Host 3

Traffic
Generator
Host

Controller Controller
1 2
Controller
Workload
Controller Proxy Generator
|
Host
Link Link Controll
n n Controller " &
Workload Workload Workload
| Workload .
Generator Generator Switch Receiver
Host 2 Heost3 Host
Traffic
—————| Receiver
Host
Link Link Link
Workload Workload Workload
Receiver Receiver Receiver
Host 1 Hest2 Heost 3

6. MY RESEARCH. SWITCHING FLOW HANDLING

PACKET-IN requests per second increase, then decrease PACKET-IN requests per second decrease, then increase
(0/500/1250/750/250) (1250/500/0/750/1000)

2 — 2 — —

6. MY RESEARCH. SWITCHING FLOW HANDLING

My proposal for solving the issue — OpenFlow proxy:

1. Proxy works as a mediary between switch and controllers.
2. Both controllers connecting to proxy work in EQUAL role.

3. Proxy is seen as two controllers — it binds to two IP addresses, both are provided to the
switch.

4. Switch will always send a pair of asynchronous messages (due to EQUAL roles), which proxy
relays to both controllers.

5. Both controllers have up-to-date knowledge of the network structure without the need of
East-West Interface.

6. In case of PACKET-IN messages proxy relays the request to a single controller.

Main Cantroller

Second dontroller

3. An arbirtrary flow is chosen for calculating time of
handling. The difference between PACKET-IN sent to main
controller and PACKET-OUT received from it are used for
calculating mean delay (moving average). Value is compared
against two thresholds and decision for a distribution state

change is made.

2. PACKET-IN messages
with encapsulated
packets. Proxy is seen as
two switches due to
controllers having

EQUAL role.

4 3

2

1

: :
: :
: :
4 4
==

1. First packets of 4

different flows.

6. MY RESEARCH. SWITCHING FLOW HANDLING

Example possible states:

° 100% | 0% - this corresponds to situations in which all of the requests are handled by the first
controller, the default startup state,

° 93.75% | 6.25% - approximately 93.75% of the requests are handled by the first controller, rest is
offloaded to the second,

o 87.5% | 12.5% - approximately 87.5% of the requests are handled by the first controller, rest is
offloaded to the second,

° 75% | 25% - approximately 75% of the requests are handled by the first controller, rest is offloaded to
the second,

° 50 % | 50% - the requests are handled almost equally between the controllers.

STATE #1: AVERAGE OF CONTROLLER’S STATE #2: AVERAGE OF CONTROLLER’S
HANDLING INCREASES HANDLING DECREASES

Lo} Lo

Main Cgntroller Second Jontroller

Main Cantroller Second Qontroller

] : o
: ; B [

3. Average for controller handing in the case of flow 1 is
above upper threshold (set to 2 ms).

] 3. Average for controller handing in the case of flow 1 is
4, Change state from previous one (75]25) to new one

below lower threshold (set to 1.8 ms).

(50150). 4. Change state from previous one (50| 50) to new one
(75]25).
1 1
1 1
2. PACKET-IN messages \: :I
with encapsulated 2 2 2. PACKET-IN messages
packets. Proxy is seen as — with encapsulated IZ ZI
two switches due to packets. Proxy is seen as
. 3 3 two switches due to
con;gﬂl:[srzla:ng controllers having E ZI
' EQUAL role.
- -]
=z =
aNoEnEniVA == [[/ES
1. First packets of 4 1. First packets of 4
different flows. different flows.

6. MY RESEARCH. SWITCHING FLOW HANDLING

3
93.75]6.25
87.25]12.5
25
_ 93.75]6.25
g
9 100
: 2 LI BN B B N N NN N OB N B NN O) IR N NN N NN N
=]
(=
w [RN NN N NN NNNNENMNNHENNMNNNNMNMNNEHMNNNN) LA NN NN NN NENNNNENNNNNIN] [EEEE NN N] [E R E N E NN NN NNENNN] [EE RN NN NI LR NN]
v
._U"
3 15
©
=
ol
Q
(4]
@ 1
©
Q
-
z
05
937 1db(0
N
0

10 20 30 40 50 60 70 80 a0 100 110 120 130 140 150
Time into scenario [s]

6. MY RESEARCH. SWITCHING FLOW HANDLING

An interesting question arises the moment proxy is working in the system...

How much of a delay the proxy adds by itself?
o Attempt #1 (failure)
o Proxy coded in Python.
> Mean proxy delay: 120 ms.
o Attempt #2 (failure)
° Proxy coded in C++.
o Mean proxy delay: 10 ms.
o Attempt #3 (success!)
° Proxy coded in C++.

> Nagle’s algorithm turned off in proxy.

° Mean proxy delay: 110 ps.

/. CONCLUSIONS AND FURTHER WORKS

CONCLUSIONS:
o Efficiency of the controller itself has a great impact on overall performance of the SDN network.

o Controller’s performance issue should be solvable by distributing the workflow between a number of
controllers.

o Research community focus on distributing control over switches between the controllers, not the flows
themselves.

> An OpenFlow proxy is a method for distributing flows between controllers.

o OpenFlow proxy requires a mechanism to dynamically change the distribution to mitigate resource
waste. Currently, an easier, discreet one is implemented.

FURTHER WORKS:

o Repeating last year scenarios in new environment with proxy and comparing the results.
o Making the proxy be seen as a single controller, instead of a pair of them.

o Changing the distribution mechanism to continuous one.

Thank you, for your attention!

	Slajd 1: DISTRIBUTING FLOWS BETWEEN SDN CONTROLLERS
	Slajd 2: AGENDA
	Slajd 3: 1. PRINCIPLES OF SOFTWARE DEFINED NETWORKING (SDN)
	Slajd 4: 2. SDN PERFORMANCE
	Slajd 5: 2. SDN PERFORMANCE
	Slajd 6: 3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE
	Slajd 7: 3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE
	Slajd 8: 3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE
	Slajd 9: 3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE
	Slajd 10: 4. CURRENT STATE. ARE VENDORS READY?
	Slajd 11: 4. CURRENT STATE. ARE VENDORS READY?
	Slajd 12: 4. CURRENT STATE. ARE VENDORS READY?
	Slajd 13: 4. CURRENT STATE. ARE VENDORS READY?
	Slajd 14: 4. CURRENT STATE. ARE VENDORS READY?
	Slajd 15: 5. CURRENT TREND IN RESEARCH. "SWITCHING THE SWITCHES"
	Slajd 16: 6. MY RESEARCH. SWITCHING FLOW HANDLING
	Slajd 17: 6. MY RESEARCH. SWITCHING FLOW HANDLING
	Slajd 18: 6. MY RESEARCH. SWITCHING FLOW HANDLING
	Slajd 19
	Slajd 20: 6. MY RESEARCH. SWITCHING FLOW HANDLING
	Slajd 21
	Slajd 22: 6. MY RESEARCH. SWITCHING FLOW HANDLING
	Slajd 23: 6. MY RESEARCH. SWITCHING FLOW HANDLING
	Slajd 24: 7. CONCLUSIONS AND FURTHER WORKS
	Slajd 25: Thank you, for your attention!

