
DISTRIBUTING FLOWS 
BETWEEN SDN CONTROLLERS

Jacek Litka, MSc Eng.



AGENDA

1. Principles of Software Defined Networking (SDN)

2. SDN Performance

3. Distributing Flows, a Solution for SDN Performance

4. Current State. Are Vendors Ready?

5. Current Trend in Research. "Switching the Switches"

6. My Research. Switching Flow Handling

7. Conclusions and Further Works



1. PRINCIPLES OF SOFTWARE DEFINED NETWORKING (SDN)



2. SDN PERFORMANCE

SDN performance is not a well-defined problem – Even though recommendation documents 
exist, no specific guidelines have been provided.

Issues occur in both controller and switch layers – A number of them, many not correlated, 
disturb the efficiency of SDN architecture.

Interconnection between these two layers provides additional hurdles – Connecting controllers 
to switches in a production-type environment provides its own considerations.



2. SDN PERFORMANCE

Possible performance considerations in switch 
layer:

◦ switching time,

◦ flow table lookup time,

◦ flow table capacity limits,

◦ flow rule installation time.

Possible performance considerations in 
controller layer:

◦ time of handling,

◦ intensity of requests,

◦ buffer limits for incoming PACKET-IN messages,

◦ topology reconstruction time.

Possible performance considerations between 
switch and controller layers:

◦ limitations on switch-to-controller requests rate,

◦ physical distance between controllers and 
switches,

◦ placement of controllers in overall SDN network 
structure,

◦ possibility of switch not having completed the 
process of flow rule installation when a 2nd 
packet of that flows is received by it.



3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE

1. Increase of controller’s workload leads to increase of PACKET-IN handle time.

2. Simple solution? Decrease the workload!

3. However, we do not have the ability to change the volume of traffic in the network.

4. Complex solution? Distribute the workload!



3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE

Use case #1:

Distribute the workload equally

Benefit:
◦ Decreases workload of a single controller.

Drawback:
◦ With a small overall workload, there is a waste 

of resources.



3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE

Use case #2:

Offload some of the workload

Benefit:
◦ Decreases workload of the „main” controller.

Drawback:
◦ How big of an „offload” should there be?



3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE

Use case #3:

Dynamically change the offload value

Benefits:
◦ Decreases workload of the „main” controller. 

◦ Mitigating unnecessary waste of resources.

Drawback: 
◦ Requires an algorithm for calculating the offload 

value.



4. CURRENT STATE. ARE VENDORS READY?

Yes. IN THEORY.
◦ OpenFlow switch may work with more than one controller by assigning appropriate roles:

◦ MASTER,

◦ EQUAL,

◦ SLAVE.

◦ ITU-T recommendation defines an EAST-WEST INTERFACE for communication between controllers.

◦ OpenFlow since version 1.3 defines „auxiliary connections” for distributing protocol messages (including 
PACKET-IN) between controllers.



4. CURRENT STATE. ARE VENDORS READY?

No. IN PRACTICE.
◦ Controller states do not work well in distributing workload scenarios.

◦ MASTER – There can be only one, each of the other controllers has to work in SLAVE role. MASTER takes on all PACKET-IN 
messages.

◦ SLAVE – Does not know the topology of the network. Is unable to design flow rules.

◦ EQUAL – Every EQUAL controller receives every asynchronous message from a switch; therefore, a PACKET-IN message is generated 
to all controllers.

◦ East-West Interface is not standardized; software implementations sometimes DO NOT WORK.

◦ Open vSwitch, the reference open source OpenFlow switch, DOES NOT implement auxiliary 
connections.



4. CURRENT STATE. ARE VENDORS READY?
ORIGINAL CODE FOR CONTROLLERS' COOPERATION IN FLOODLIGHT SDN CONTROLLER.



4. CURRENT STATE. ARE VENDORS READY?
MAKING IT ACTUALLY WORK.



4. CURRENT STATE. ARE VENDORS READY?
OPEN VSWITCH STATEMENT ON AUXILIARY CONNECTIONS.



5. CURRENT TREND IN RESEARCH. "SWITCHING THE SWITCHES"

State 1: One controller handles multiple networks State 2: Networks are distributed among multiple 
controllers



6. MY RESEARCH. SWITCHING FLOW HANDLING

Emulation environment from 2024 Emulation environment from 2025



6. MY RESEARCH. SWITCHING FLOW HANDLING
PACKET-IN requests per second increase, then decrease 

(0/500/1250/750/250)

1

2

1
1

2
3

2
4

5
3

6
7

4
8

9
6

1
1

7
3

3
4

3
1

6
5

2
8

7
4

0
9

5
3

1
6

5
3

7
7

5
1

0
2

2
2

4
3

4
6

4
6

8 2
1

2
4

2
4

6
3

6
8

4
9

0
6

1
2

7
3

4
9

2
2

1
4

3
3

6
4

5
8

5
8

0
7

0
2

8
2

4

PACKET-IN requests per second decrease, then increase 
(1250/500/0/750/1000)

1

2

1
1

2
2

2
4

3
3

6
4

4
8

5
6

0
6

4
3

1
6

4
2

8
5

4
0

6
5

2
7

6
4

8
7

6
9

8
3

2
0

4
3

2
5

4
4

6
5

6
7

6
8

8
8

0
9

9
3

0
2

1
1

4
2

2
6

3
3

8
4

5
0

5
6

2
6

7
4

7
6

3
1

8
4

3
0

5
4

2
6



6. MY RESEARCH. SWITCHING FLOW HANDLING

My proposal for solving the issue – OpenFlow proxy:

1. Proxy works as a mediary between switch and controllers.

2. Both controllers connecting to proxy work in EQUAL role.

3. Proxy is seen as two controllers – it binds to two IP addresses, both are provided to the 
switch.

4. Switch will always send a pair of asynchronous messages (due to EQUAL roles), which proxy 
relays to both controllers.

5. Both controllers have up-to-date knowledge of the network structure without the need of 
East-West Interface.

6. In case of PACKET-IN messages proxy relays the request to a single controller.





6. MY RESEARCH. SWITCHING FLOW HANDLING

Example possible states:
◦ 100% | 0% - this corresponds to situations in which all of the requests are handled by the first 

controller, the default startup state,

◦ 93.75% | 6.25% - approximately 93.75% of the requests are handled by the first controller, rest is 
offloaded to the second,

◦ 87.5% | 12.5% - approximately 87.5% of the requests are handled by the first controller, rest is 
offloaded to the second,

◦ 75% | 25% - approximately 75% of the requests are handled by the first controller, rest is offloaded to 
the second,

◦ 50 % | 50% - the requests are handled almost equally between the controllers.



STATE #1: AVERAGE OF CONTROLLER’S 
HANDLING INCREASES

STATE #2: AVERAGE OF CONTROLLER’S 
HANDLING DECREASES



6. MY RESEARCH. SWITCHING FLOW HANDLING



6. MY RESEARCH. SWITCHING FLOW HANDLING

An interesting question arises the moment proxy is working in the system…

How much of a delay the proxy adds by itself?
◦ Attempt #1 (failure)

◦ Proxy coded in Python.

◦ Mean proxy delay: 120 ms.

◦ Attempt #2 (failure)
◦ Proxy coded in C++.

◦ Mean proxy delay: 10 ms.

◦ Attempt #3 (success!)
◦ Proxy coded in C++.

◦ Nagle’s algorithm turned off in proxy.

◦ Mean proxy delay: 110 µs.



7. CONCLUSIONS AND FURTHER WORKS

CONCLUSIONS:
◦ Efficiency of the controller itself has a great impact on overall performance of the SDN network.

◦ Controller’s performance issue should be solvable by distributing the workflow between a number of 
controllers.

◦ Research community focus on distributing control over switches between the controllers, not the flows 
themselves.

◦ An OpenFlow proxy is a method for distributing flows between controllers.

◦ OpenFlow proxy requires a mechanism to dynamically change the distribution to mitigate resource 
waste. Currently, an easier, discreet one is implemented.

FURTHER WORKS:

◦ Repeating last year scenarios in new environment with proxy and comparing the results.

◦ Making the proxy be seen as a single controller, instead of a pair of them.

◦ Changing the distribution mechanism to continuous one.



Thank you, for your attention!


	Slajd 1: DISTRIBUTING FLOWS BETWEEN SDN CONTROLLERS
	Slajd 2: AGENDA
	Slajd 3: 1. PRINCIPLES OF SOFTWARE DEFINED NETWORKING (SDN)
	Slajd 4: 2. SDN PERFORMANCE
	Slajd 5: 2. SDN PERFORMANCE
	Slajd 6: 3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE
	Slajd 7: 3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE
	Slajd 8: 3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE
	Slajd 9: 3. DISTRIBUTING FLOWS, A SOLUTION FOR SDN PERFORMANCE
	Slajd 10: 4. CURRENT STATE. ARE VENDORS READY?
	Slajd 11: 4. CURRENT STATE. ARE VENDORS READY?
	Slajd 12: 4. CURRENT STATE. ARE VENDORS READY?
	Slajd 13: 4. CURRENT STATE. ARE VENDORS READY?
	Slajd 14: 4. CURRENT STATE. ARE VENDORS READY?
	Slajd 15: 5. CURRENT TREND IN RESEARCH. "SWITCHING THE SWITCHES"
	Slajd 16: 6. MY RESEARCH. SWITCHING FLOW HANDLING
	Slajd 17: 6. MY RESEARCH. SWITCHING FLOW HANDLING
	Slajd 18: 6. MY RESEARCH. SWITCHING FLOW HANDLING
	Slajd 19
	Slajd 20: 6. MY RESEARCH. SWITCHING FLOW HANDLING
	Slajd 21
	Slajd 22: 6. MY RESEARCH. SWITCHING FLOW HANDLING
	Slajd 23: 6. MY RESEARCH. SWITCHING FLOW HANDLING
	Slajd 24: 7. CONCLUSIONS AND FURTHER WORKS
	Slajd 25: Thank you, for your attention!

