Questions for diploma exam - NT II

InterMath: Joint double degree Msc programme Mathematics for new materials design

- 1. The molecular dynamics (MD) method: principle of operation, advantages and limitations.
- 2. Periodic boundary conditions in computer simulations. Physical meaning and applicability, main limitations.
- 3. Empirical potentials. Physical meaning, applications, limitations.
- 4. Statistical interpretation of the wave function.
- 5. Operators in quantum mechanics. Meaning, mathematical structure and properties.
- 6. Time-dependent Schrödinger equation. Formulation and solving methods.
- 7. Variational Ritz method. Description and applicability.
- 8. Triplet and singlet open-shell states of molecules. General description, energy of states (which state has lower energy and why).
- 9. Estimation of energy of a chemical reaction for which the spins of the reactants and product are different.
- 10. Comparison of sputtering and evaporation PVD processes.
- 11. Determination of chemical composition. List and describe briefly at least 3 methods.
- 12. Dynamical Systems: Linearization around an equilibrium point.
- 13. Hamiltonian Systems.
- 14. Structural Stability.
- 15. Hilbert spaces.
- 16. Bounded linear operators on Banach spaces.
- 17. Spectrum and resolvent of bounded linear operators on Hilbert spaces.
- 18. Transient and permanent response specifications for feedback control systems.
- 19. Finite-time response of digital control systems.
- 20. Controllability, observability and the separation principle.
- 21. Definition of characteristic vectors and characteristic surfaces for linear partial differential operators.
- 22. Classification of second order linear PDEs.
- 23. Fundamental solution for heat equation and Laplace equation.
- 24. D'Alembert formula.

Dziekan

prof. dr hab. Jozef E. Sienkiewigz WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ

[2]