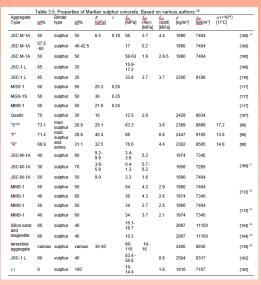

FEM analysis and manufacturing technology of a 3D-printed Martian habitat considering load and material selection

Context and objective

Conditions on the landing site generated from Mars Climate Database (https://www-mars.lmd.jussieu.fr)

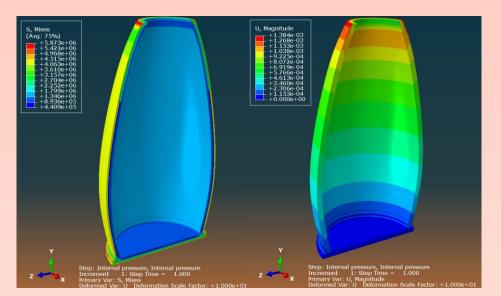

Mars exploration

With plans for sustained Martian presence by space agencies like ESA and NASA, robust habitat design is crucial. These habitats must endure extreme environmental conditions, compared to buildings on Earth.

Aim of the thesis

This thesis proposes a 3D-printed Martian habitat using insitu resources (ISRU) with structural analysis using the Finite Element Method (FEM). The objective is to determine material feasibility and structural resilience under Martian-specific loads, proposing framework for future design and construction challenges.

Methodology and tools



Tabular overview of the regolith-based materials discussed (left). Basalt fibres possible to use for 3D printing (right).

- Possible materials have been discussed with focus on their usability and mechanical parameters.

 Regolith composites, specifically sulphur concrete marscrete, have been chosen as most promissing materials for the 3D-printing technology.
- 3D-printing-based construction technology has been proposed and discussed.
- A simplified model of a Mars habitat based on NASA's
 3D-Printed Habitat Challenge have been prepared.
- The thermal, internal pressure, wind, and cumulated dust analysis under extraterrestrial parameters based on local climate parameters for the chosen location of Jezero Crater (Perseverance landing site) has been performed.

Results and significance

Equivalent stress in MPa calculated according to HMH criterion (left) and total deformation in m across the structure (right) for the load combination.

Innovative edge and key findings

- Habitat structure safely able to withstand Martian environmental and operational loads as shown through FEM-based validation model
- Internal pressure as the dominant design constraint
- Mars-specific adaptation of Eurocodes proves valid and functional
- Mars regolith's abundance combined with the recent discovery of pure sulphur in deposits enabling efficient ISRU technologies
- ISRU using regolith-based marscrete proved credible
- Eurocode- based approach adapted to Martian conditions
- Bibliography including over 150 papers and other sources from the fields of materials science, space architecture, and planetary geology.
- Framework for future design challanges proposed, further development of structural codes for space applications needed

Gdańsk University of Technology

4.02.2025

Author: Karol Prabucki

E-mail: s162140@student.pg.edu.pl Supervisor: **Łukasz Smakosz, PhD**